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� Given 
– A model of a physical system such as a printer or spacecraft
– The internal actions taken and observations received thus far
– A description of the desired state of the system

� Task
– Determine the most likely internal states of the system
– Find commands to move any likely state to a desirable state
– If that’s not possible, do the best you can

Problem StatementProblem Statement

CommandObservations

Goals

Model
State

Estimate
Action

Selection
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ChallengesChallenges
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� Diagnosis or State Estimation
– Definition: After each command, determine the set of likely states

– Problem: The state is not completely observable. The number of states is huge.

– Problem: Failures may not manifest themselves at the time they occur.
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� Conformant Planning
– Definition: Given a set of states, find one plan that achieves the goal in every state

– Problem: Actions chosen for one state can have unintended effects in another.
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ChallengesChallenges
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� Planning With Failures
– Definition: Plan to achieve as much as possible given failures and time limits

– Problem: Every goal may not be achievable in every likely state.

– Problem: Some combinations are much more difficult to plan for than others. 
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StatusStatus
� Diagnosis or State Estimation: L2  (Kurien & Nayak, AAAI 200)

– Tracks multiple system trajectories

– Backtracks to find failures that were not immediately observable

– Extends ideas of Livingstone (Williams and Nayak, AAAI 1996) as flown on DS1

– Used by S/C engineers to develop X-34, X-37 models & diagnostic scenarios

– In use at NASA, licensed to a spacecraft software company

� Conformant Planning:  fragPlan  (Kurien, Nayak & Smith, AIPS 2002)

– Novel, incremental approach to conformant planning

– Operates in an anytime manner

– Fastest conformant planner on problems with parallelism

– Described in Kurien, Nayak and Smith, AIPS 2002

� Planning With Failures: SCOPE  (in preparation)

– Novel approach when desired plan is not possible

– Demonstrates multiple strategies for reducing planning scope
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Conformant PlanningConformant Planning
� Problem Instance

– Let Domain be a description of a planning domain
– Let Worlds be a set of initial states of the domain, {w1, w2, … wn}
– Let G be a goal description
– There are no sensing actions

� Task: Find plan P that applied to any wi results in a state entailing G

� P  is a conformant plan

� Challenge: Actions chosen in wi may have undesirable effects in wj

P

w1, 
w2, 
… 
wn

G



10

Existing Approaches to Existing Approaches to 
Conformant PlanningConformant Planning

� Generate a plan in wi and test if it achieves G in all Worlds

HSCP

GPT

CMBP

CGP

BDD + heuristic searchBertoli, Cimatti & Roveri 2001

Heuristic search in space of belief statesBonet & Geffner 2001

BDD representation of belief stateCimatti & Roveri 1999

Graphplan over multiple plan graphsSmith & Weld 1998

SAT encoding determines possible plans 
which must be checked

Castellini, Giunchiglia & 
Tachella 2001

CPlan

� Select actions for P by considering all Worlds simultaneously
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An Observation on Conformant PlansAn Observation on Conformant Plans
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� Example Domain: Bomb in the Toilet
– Set of N packages, p1 through pN
– Packages may have bombs (1, many, a subset)
– Bombs defused by dunking the package in the toilet
– The toilet must be flushed before dunking again

� Example Problem
– 1 toilet
– 6 packages
– A bomb is in  p1, p2, p3, p5 or (p4 & p6)



12

An Observation on Conformant PlansAn Observation on Conformant Plans

� Example Domain: Bomb in the Toilet
– Set of N packages, p1 through pN
– Packages may have bombs (1, many, a subset)
– Bombs defused by dunking the package in the toilet
– The toilet must be flushed before dunking again
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An Observation on Conformant PlansAn Observation on Conformant Plans
� Example Domain: Bomb in the Toilet

– Set of N packages, p1 through pN
– Packages may have bombs (1, many, a subset)
– Bombs defused by dunking the package in the toilet
– The toilet must be flushed before dunking again
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An Observation on Conformant PlansAn Observation on Conformant Plans
� Example Domain: Bomb in the Toilet

– Set of N packages, p1 through pN
– Packages may have bombs (1, many, a subset)
– Bombs defused by dunking the package in the toilet
– The toilet must be flushed before dunking again

Dunk p511
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1

Plan 
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Action

Dunk p1

Flush

Dunk p2

Flush

Dunk p3

Bomb in the Toilet
6 packages, 1 toilet

� Fragment if bombs in p6 and p4

� Fragment if bomb in p1

� Repair action to unify fragments
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An Observation on Conformant PlansAn Observation on Conformant Plans

� Every conformant plan P must contain a fragment 
that achieves the goal in each world

� Each world has plans that are fragments of some P

� Approach:  
Grow a set of fragments into a conformant plan
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� Example Domain: Bomb in the Toilet
– Set of N packages, p1 through pN
– Packages may have bombs (1, many, a subset)
– Bombs defused by dunking the package in the toilet
– The toilet must be flushed before dunking again
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FragmentFragment--based Conformant Planningbased Conformant Planning

� Intuition

For each wi in Worlds  {
1. Generate a plan for Domain to achieve G in wi

2. Add the planned actions to Domain 
}

� Step 2 ensures the plan for wi+1 includes the actions 
that achieved G in {w1… wi}
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FragmentFragment--based Conformant Planningbased Conformant Planning
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FragmentFragment--based Conformant Planningbased Conformant Planning
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FragmentFragment--based Conformant Planningbased Conformant Planning
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FragmentFragment--based Conformant Planningbased Conformant Planning
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FragmentFragment--based Conformant Planningbased Conformant Planning
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FragmentFragment--based Conformant Planningbased Conformant Planning
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� Search will be required
– The fragment chosen for w1 may not allow a plan for w2 
– The fragment chosen for w2 may disrupt the plan for w1
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The FragPlan AlgorithmThe FragPlan Algorithm

completed=∅
While (Worlds ≠ ∅) {

select and remove world wi from Worlds 
Choose a plan Pi for Domain that achieves G in wi

Fail if Pi doesn’t achieve G for all w ∈∈∈∈completed
Extract fragment Fi from Pi

Domain = Domain + Fi

add wi to completed }
Return Pi
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Search StrategiesSearch Strategies

� Chronological Backtracking

� Probing
– Extend fragments to as many worlds as possible, then restart
– On failure, discard all fragments and empty completed
– Effective even when a small subset of worlds are very difficult
– Fits well with deterministic planner we use to choose Pi for wi

� Bubbling
– Find difficult worlds. Solve first by moving them up the stack.

w1

F1 F2 F3

w3

F1 F2 F3

w2

F1 F2 F3

W1 fragments

First world selected
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ImplementationImplementation

Non-Conformant PlannerPlanning
Domain

Plan Pi for 
worldi

Fragmentsworldi

Worlds
Specification Fragment

Extraction
Search
Control

fragPlan

Conformant Plan

� fragPlan uses a non-conformant planner as a black box
� We need only to be able to force the planner to include fragments
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Domains ConsideredDomains Considered
� Hydraulic/Electric Networks

� Grid Worlds
– A robot is in a ring of rooms
– It must close and lock all windows

� Logistics
– Packages must be delivered to various cities
– Some roads have mines

� Bomb in the Toilet
– A set of packages arrive, one or more has a bomb
– Detailed results available for many planners

� Focused on problems solvable on a reactive (few seconds) scale

� World sets tested up to size 150, goal sets up to size 10



27

Unique Characteristics of fragPlanUnique Characteristics of fragPlan

� Novel algorithm for conformant planning that performs 
well on both serial and parallel problems

� Constructive approach
– We always have a plan, improves in an anytime manner
– Can delete and add worlds and re-use partial results

� More scalable than other possible worlds approaches 
– Memory usage is constant as the number of worlds increases
– Computation is less susceptible to explosive growth
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Is Conformant Planning Enough?Is Conformant Planning Enough?

� Typical Goals
� Configure the spacecraft to thrust to enter orbit
� Configure the camera to take science images on approach

� Typical Safety Constraints
� Turn the amp off before switching transponders to avoid burn out.
� Once a device is on, never turn it off.  It might not come back on.
� I’m loathe to blow the pyro valves that enable the backup engine

� Typical Failures
� The camera is dead, it’s power popped off, or its interface is hung
� Thruster +x+y or –x-y is clogged
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SCOPESCOPE -- Safe, Conformant, Optimizing Planning EngineSafe, Conformant, Optimizing Planning Engine

� Goal: Find the best possible plan in the available time
� Approach: Manipulate the scope of the problem

While (Time ≠ 0) {
select constraints from {Worlds ∪ Goals ∪ Safety}
FragPlan(constraints)
}

� Challenge:  
– Which subsets of {Worlds ∪ G ∪ S} admit a plan? 
– Will we have a plan when time runs out?
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SCOPE SCOPE –– Safe, Conformant, Optimizing Planning EngineSafe, Conformant, Optimizing Planning Engine

� Approach: Manipulate the scope of the problem

While (Time ≠ 0) {
select constraints from {Worlds ∪ Goals ∪ Safety}
FragPlan(constraints) for some time
}

Balance solving current constraints vs. exploration 
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SCOPE SCOPE –– Safe, Conformant, Optimizing Planning EngineSafe, Conformant, Optimizing Planning Engine

� Approach: Manipulate the scope of the problem

While (Time ≠ 0) {
select constraints from {Worlds ∪ Goals ∪ Safety}
FragPlan(constraints) for some time
}

� Pareto-optimality requires checking all constraint subsets

� We have developed many simpler selection policies and 
experimented with several
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StatusStatus
� Diagnosis or State Estimation: L2  (Kurien & Nayak, AAAI 200)

– Tracks multiple system trajectories

– Backtracks to find failures that were not immediately observable

– Extends ideas of Livingstone (Williams and Nayak, AAAI 1996) as flown on DS1

– Used by S/C engineers to develop X-34, X-37 models & diagnostic scenarios

– In use at NASA, licensed to a spacecraft software company

� Conformant Planning:  fragPlan  (Kurien, Nayak & Smith, AIPS 2002)

– Novel, incremental approach to conformant planning

– Operates in an anytime manner

– Fastest conformant planner on problems with parallelism

– Described in Kurien, Nayak and Smith, AIPS 2002

� Planning With Failures: SCOPE  (in preparation)

– Novel approach when desired plan is not possible

– Demonstrates multiple strategies for reducing planning scope
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Some Current Work at PARCSome Current Work at PARC
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Backing SlidesBacking Slides
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� How do we make complex systems autonomous?
� How can they continue operating after failures? 

Cool Problems at NASA & PARCCool Problems at NASA & PARC
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What is planning?What is planning?

Closed Open

StuckValve

Deliver package A to 
San Jose, package B 
to Oakland, package C 
to Daly City ….

Buy me a cheap ticket to 
Rio during Carnival and 
print my itinerary at a 
printer near my office.

Configure the craft to thrust

Web Software Agents

Logistics

Autonomous Machines

Domain Model Typical GoalTypical Application
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Choosing ActionsChoosing Actions
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Choosing ActionsChoosing Actions
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Choosing ActionsChoosing Actions
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Our State Estimation ProblemsOur State Estimation Problems

Spacecraft Propulsion System Model
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Mars Propellant Production Model

� Hundreds of variables

� Typically 10150 discrete states

� Mostly deterministic, but components will fail

� Failure probabilities known only by rank or order
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Approaches to State EstimationApproaches to State Estimation

� Approximate the distribution over the state space

Dynamic Bayes’ net

Kalman filter

Need to compute huge joint distributionsPearl 1988

Continuous only, unimodal, white noiseKalman 1960

Depends upon stochasticity assumptionsBoyen & Kohler 1998Approximate DBN

Particles attracted to likely statesDearden 2002Particle Filters

� Exact methods
� Problem: State space is enormous and discontinuous

� Problem: System is almost deterministic with abrupt failures
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Approaches to State EstimationApproaches to State Estimation

No actions or state evolutionDe Kleer & Williams 1989Sherlock, GDE

State evolution, but arbitrarily bad 
approximation of the most likely state

Williams & Nayak 1996Livingstone

� Model-based diagnosis based upon logical consistency
� Advantage: Compositional 

� Refuting a diagnosis of a component may refute an 
exponential number of system diagnoses (states)

� Advantage: Incremental
� Diagnoses (states) are generated in order of likelihood

� Problem: Actions or evolution over time not handled well, or at all
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Simple Valve ExampleSimple Valve Example

• The pump pressurizes the valves

• Valve electronics send commands to valves

• Flow measured at each valve

• Electronics may hang, valves may stick shut

Pump

Valve
Electronics

Valve1

ValveN

command

Flowv1

Flowvn
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Traditional DiagnosisTraditional Diagnosis

Time

P
robability

0

Electronics 
off

1

Electronics 
on

Turn on
Electronics

2 3



45

Traditional DiagnosisTraditional Diagnosis
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Traditional DiagnosisTraditional Diagnosis
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Traditional DiagnosisTraditional Diagnosis
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The ProblemThe Problem
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Generating Trajectories IncrementallyGenerating Trajectories Incrementally
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Generating Trajectories IncrementallyGenerating Trajectories Incrementally
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ApproachApproach

� Create a structure that can enumerate every possible 
trajectory of the system

� Enumerate N trajectories that are consistent with 
observations thus far

� Extend each trajectory as actions are taken

� When trajectories are knocked out by new 
observations, incrementally generate the next most 
likely trajectory
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Encoding Device BehaviorEncoding Device Behavior

cmdIn=on & Failure=None

Hung
cmdOut to valves=NULL

No output to valves

Off
cmdOut to Valves=NULL

No output to valves

On
cmdOut to Valves=open

if  cmdIn=open

cmdIn=off & Failure=None

Failure=HangFailure=Hang

Electronics Model

Value P(Failure=Value)
None   α
Hang  1-α

Prior Probabilities
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Encoding Device BehaviorEncoding Device Behavior

cmdIn=on & Failure=None
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cmdOut to valves=NULL
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Failure=HangFailure=Hang

Electronics Model

Constraint Representation

Time t+1
mode=Off
mode=Hung

mode=Off & cmdIn=off & Failure=None ����
Failure=Hang ����

mode=Off ���� cmdOut=NULL

Time t

Mode Behavior

Transitions



54

Encoding Device BehaviorEncoding Device Behavior
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Encoding Device BehaviorEncoding Device Behavior
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cmdIn=on & Failure=None

Hung
cmdOut to valves=NULL

No output to valves

Off
cmdOut to Valves=NULL
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Failure=HangFailure=Hang
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Time t Time t+1 Time t Time t+1

open open
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Trajectory RepresentationTrajectory Representation
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Trajectory RepresentationTrajectory Representation
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Trajectory RepresentationTrajectory Representation
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Generating No GoodsGenerating No Goods
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No Good: An assignment that conflicts with observations
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� Every superset of a No Good is implicitly ruled out
� The most likely diagnosis differs from every No Good
� We can use conflict-based search (de Kleer & Williams 1989)
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Minimizing Each Time StepMinimizing Each Time Step
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� Proven to be a conservative approximation

� Intuition: Many temporal distinctions are irrelevant 

� Leverage: Merge times t and t-1 for for irrelevant variables
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Truncating the RepresentationTruncating the Representation
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L2 Contributions in DiagnosisL2 Contributions in Diagnosis
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� Developed novel representation for diagnosis over time

� Demonstrated low growth and also constant sized approximations

� Developed novel algorithm for finding all same-probability diagnoses

� Results published in Kurien and Nayak, AAAI 2000

� Significant real-world validation performed

– Engineers modeled the X34 and X37 and ran diagnostic scenarios

– Available for non-profit use and for-profit licensing from NASA
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Performance on Bomb in the Toilet ProblemsPerformance on Bomb in the Toilet Problems

Packages Toilets FragPlan HSCP GTP CMBP
6 1 0.11 0.01 0.07 0.01
8 1 0.47 0.01 0.11 0.20
10 1 2.89 0.01 1.31 0.71

� HSCP dominates on serial (single toilet) instances
� FragPlan is competitive with GTP, CMBP
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Packages Toilets FragPlan HSCP GTP CMBP
8 1 0.47 0.01 0.11 0.20
8 4 0.23 0.04 8.78 2.74
8 6 0.05 0.08 68.43 20.71

� HSCP, CMBP, GPT cannot produce parallel plans
� They produce much longer, harder, serial plans
� Only FragPlan & C-Plan (not shown) are truly parallel
� C-Plan fails on most serial instances

Bomb in the Toilet with Parallelism
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Bomb in the Toilet with ParallelismBomb in the Toilet with Parallelism

� Space of serialized plans explodes as parallelism increases
� Fragments become independent, yielding linear speedup
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Planning with Extra Time StepsPlanning with Extra Time Steps

� For fragPlan, density of conformant plans rises 
� For other planners, search depth grows 
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Graph
Builder

Graph 
to  WFF

SAT
Engine

WFFPlan Graph

Black Box

ImplementationImplementation

worldi

FragPlan

Planning
Domain

Plan Pi for 
worldi

Fragments

Worlds
Specification Fragment

Extraction
Search
Control

fragPlan

Conformant Plan

� We currently use Black Box (Kautz & Selman 99) as a black box
� Black Box encodes the problem as propositional satisfiability
� Randomized SATZ used to find an assignment (i.e. a plan)
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Is Conformant Planning Enough?Is Conformant Planning Enough?

• No conformant plan may exist due to failures
• Some goals may not be achievable in any world
• Some possible worlds may not allow all goals

• Certain actions may violate safety constraints
• Safety always desired, often dominates
• Certain goals dominate at critical junctures
• A failure may force all actions to be unsafe

• Time for planning not known a priori
• We must have some plan

Given: Partial ordering on goals, safety, and worlds
Return: Best plan the available time allows
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SCOPE SCOPE –– Safe, Conformant, Optimizing Planning EngineSafe, Conformant, Optimizing Planning Engine

� Approach: Manipulate the scope of the problem

While (Time ≠ 0) {
select constraints from {Worlds ∪ G ∪ S}
FragPlan(constraints) for some time
}

� Pareto-optimality requires checking all constraint subsets

� We have developed many simpler selection policies and 
experimented with several



72

Typical Planning Problem DifficultyTypical Planning Problem Difficulty
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SCOPE StrategiesSCOPE Strategies
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� fragPlan Strategy: Go for broke
– Devote all time to solve entire constraint set
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SCOPE StrategiesSCOPE Strategies
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� dropPlan Strategy: Start big, shrink
– Devote 1/n of remaining time to solve entire constraint set
– Failure reveals difficult constraint combinations
– On failure, remove constraints guided by O, difficulty
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SCOPE StrategiesSCOPE Strategies
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� addPlan Strategy: Start small and grow
– Devote all remaining time to solving simplest problem
– Anytime
– On success, add constraints guided by partial ordering O
– Successful plans used to seed next planning attempt
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SCOPE StrategiesSCOPE Strategies
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� binPlan Strategy: Start in the middle, grow or shrink
– Attempts to rise faster than addPlan, fail less than dropPlan
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Some Observations On SCOPESome Observations On SCOPE
� fragPlan produces more conformant plans
� All SCOPE variations have better expected performance

Schematic of Typical fragPlan and SCOPE Performance
Percentage of Plans Satifying A Given Number of Constraints
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Other StrategiesOther Strategies

� We want the problem that is just short of too hard

� Intuitively, we attempt to learn the difficulty curve

� dropPlan with difficulty
– When a plan fails, we can often identify the constraints at fault
– We remove constraints that consistently cause problems

� addPlan with sliding
– If the first plans are easy, move right faster

� Reversal of fortune
– Start with all constraints and drop, learning difficulty
– If time runs short, drop all constraints and add least difficult
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Typical Performance of fragPlanTypical Performance of fragPlan

Schematic of Typical fragPlan and SCOPE Performance
Percentage of Plans Satifying A Given Number of Constraints
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Typical Performance of fragPlan Typical Performance of fragPlan vsvs SCOPESCOPE

Schematic of Typical fragPlan and SCOPE Performance
Percentage of Plans Satifying A Given Number of Constraints
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Typical Performance of fragPlan Typical Performance of fragPlan vsvs SCOPESCOPE

Schematic of Typical fragPlan and SCOPE Performance
Percentage of Plans Satifying A Given Number of Constraints
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Typical Performance of fragPlan Typical Performance of fragPlan vsvs SCOPESCOPE

Schematic of Typical fragPlan and SCOPE Performance
Percentage of Plans Satifying A Given Number of Constraints
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Strategy Performance Versus TimeStrategy Performance Versus Time

Worlds Satisfied in < 1 Second
Bomb In the Toilet With Clogging, 10 Packages

Constraint Ordering Enforced
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Worlds Satisfied in < 0.5 Second
Bomb In the Toilet With Clogging, 10 Packages

Constraint Ordering Enforced
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Worlds Satisfied in < 0.1 Second
Bomb In the Toilet With Clogging, 10 Packages

Constraint Ordering Enforced
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Other StrategiesOther Strategies
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� dropPlan with difficulty
– When a plan fails, we can identify the constraints at fault
– We remove constraints that consistently cause problems

� addPlan with sliding
– If the first plans are easy, move right faster

� Reversal of fortune
– Start with all constraints and drop, learning difficulty
– If time runs short, drop all constraints and add least difficult
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Some Observations On SCOPESome Observations On SCOPE
� The best SCOPE strategy varies with time, problem

Little time 
relative to 
problem 
complexity

Significant time 
relative to 
problem 
complexity
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� addPlan has the advantage of extending an existing plan

Some Observations On SCOPESome Observations On SCOPE


